IBERET-FOLIC-500 TABLET

Product Information

Registration Status: Active

IBERET-FOLIC-500 TABLET is approved to be sold in Singapore with effective from 1991-02-19. It is marketed by ABBOTT LABORATORIES (SINGAPORE ) PTE LTD, with the registration number of SIN05447P.

This product contains Ascorbic Acid 500mg,Calcium Pantothenate 10mg,Ferrous 105mg,Folic Acid 800mcg,Niacinamide 30mg,Pyridoxine 5mg,Riboflavin 6mg,Thiamine Mononitrate 6mg, and Vitamin B12 Oral Powder In Lactose 25mcg in the form of TABLET, FILM-COATED. It is approved for ORAL use.

This product is manufactured by PT Abbott Indonesia in INDONESIA REP OF.

It is an Over-the-counter Medicine that can be freely obtained from any retailer

Ascorbic Acid
Calcium Pantothenate
Ferrous
Folic Acid
Niacinamide
Pyridoxine
Riboflavin
Thiamine Mononitrate
Vitamin B12 Oral Powder In Lactose

Description

A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant.

Indication

Used to treat vitamin C deficiency, scurvy, delayed wound and bone healing, urine acidification, and in general as an antioxidant. It has also been suggested to be an effective antiviral agent.

Mechanism of Action

In humans, an exogenous source of ascorbic acid is required for collagen formation and tissue repair by acting as a cofactor in the posttranslational formation of 4-hydroxyproline in -Xaa-Pro-Gly- sequences in collagens and other proteins. Ascorbic acid is reversibly oxidized to dehydroascorbic acid in the body. These two forms of the vitamin are believed to be important in oxidation-reduction reactions. The vitamin is involved in tyrosine metabolism, conversion of folic acid to folinic acid, carbohydrate metabolism, synthesis of lipids and proteins, iron metabolism, resistance to infections, and cellular respiration.

Pharmacokinetics

Absorption
70% to 90%
Distribution
Metabolism
Hepatic. Ascorbic acid is reversibly oxidised (by removal of the hydrogen from the enediol group of ascorbic acid) to dehydroascorbic acid. The two forms found in body fluids are physiologically active. Some ascorbic acid is metabolized to inactive compounds including ascorbic acid-2-sulfate and oxalic acid.
Elimination

Active Ingredient/Synonyms

acide ascorbique | ácido ascórbico | acidum ascorbicum | acidum ascorbinicum | Ascorbate | Ascorbic Acid | Ascorbicap | Ascorbinsäure | L-(+)-ascorbic acid | L-Ascorbate | L-Ascorbic Acid | Vitamin C |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.



Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

Ferrous asparto glycinate is an iron-amino acid chelate. It is available as a dietary supplement used in the treatment of iron deficiency and iron deficiency anemia.

Active Ingredient/Synonyms

Ferrous asparto glycinate | Ferrous asparto glycinate |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (poaceae). Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia. [PubChem]

Indication

For treatment of folic acid deficiency, megaloblastic anemia and in anemias of nutritional supplements, pregnancy, infancy, or childhood.

Mechanism of Action

Folic acid, as it is biochemically inactive, is converted to tetrahydrofolic acid and methyltetrahydrofolate by dihydrofolate reductase. These folic acid congeners are transported across cells by receptor-mediated endocytosis where they are needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids, methylate tRNA, and generate and use formate. Using vitamin B12 as a cofactor, folic acid can normalize high homocysteine levels by remethylation of homocysteine to methionine via methionine synthetase.

Toxicity

IPR-MUS LD50 85 mg/kg,IVN-GPG LD50 120 mg/kg, IVN-MUS LD50 239 mg/kg, IVN-RAT LD50 500 mg/kg, IVN-RBT LD50 410 mg/kg

Active Ingredient/Synonyms

Folacin | Folate | Folic acid | Folsaeure | N-[(4-{[(2-amino-4-oxo-1,4-dihydropteridin-6-yl)methyl]amino}phenyl)carbonyl]-L-glutamic acid | N-Pteroyl-L-glutamic acid | PGA | PteGlu | Pteroyl-L-glutamate | Pteroyl-L-glutamic acid | Pteroyl-L-monoglutamic acid | Pteroylglutamic acid | Vitamin B9 | Vitamin Bc | Vitamin M | Folic Acid |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.



Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

Pyridoxine is the 4-methanol form of vitamin B6, an important water-soluble vitamin that is naturally present in many foods. As its classification as a vitamin implies, Vitamin B6 (and pyridoxine) are essential nutrients required for normal functioning of many biological systems within the body. While many plants and microorganisms are able to synthesize pyridoxine through endogenous biological processes, animals must obtain it through their diet. More specifically, pyridoxine is converted to pyridoxal 5-phosphate in the body, which is an important coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, and aminolevulinic acid. It's important to note that Vitamin B6 is the collective term for a group of three related compounds, pyridoxine, pyridoxal, and pyridoxamine, and their phosphorylated derivatives, pyridoxine 5'-phosphate, pyridoxal 5'-phosphate and pyridoxamine 5'-phosphate. Although all six of these compounds should technically be referred to as vitamin B6, the term vitamin B6 is commonly used interchangeably with just one of them, pyridoxine [A32836]. Vitamin B6, principally in its biologically active coenzyme form pyridoxal 5'-phosphate, is involved in a wide range of biochemical reactions, including the metabolism of amino acids and glycogen, the synthesis of nucleic acids, hemogloblin, sphingomyelin and other sphingolipids, and the synthesis of the neurotransmitters serotonin, dopamine, norepinephrine and gamma-aminobutyric acid (GABA) [A32837]. Pyridoxine is used medically for the treatment of vitamin B6 deficiency and for the prophylaxis of isoniazid-induced peripheral neuropathy (due to [DB00951]'s mechanism of action which competitively inhibits the action of pyridoxine in the above-mentioned metabolic functions). It is also used in combination with [DB00366] (as the commercially available product Diclectin) for the treatment of nausea and vomiting in pregnancy.

Indication

Pyridoxine is indicated for the treatment of vitamin B6 deficiency and for the prophylaxis of [DB00951]-induced peripheral neuropathy. It is also approved by Health Canada for the treatment of nausea and vomiting in pregnancy in a combination product with [DB00366] (as the commercially available product Diclectin).

Mechanism of Action

Vitamin B6 is the collective term for a group of three related compounds, pyridoxine (PN), pyridoxal (PL) and pyridoxamine (PM), and their phosphorylated derivatives, pyridoxine 5'-phosphate (PNP), pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP). Although all six of these compounds should technically be referred to as vitamin B6, the term vitamin B6 is commonly used interchangeably with just one of them, pyridoxine. Vitamin B6, principally in its biologically active coenzyme form pyridoxal 5'-phosphate, is involved in a wide range of biochemical reactions, including the metabolism of amino acids and glycogen, the synthesis of nucleic acids, hemogloblin, sphingomyelin and other sphingolipids, and the synthesis of the neurotransmitters serotonin, dopamine, norepinephrine and gamma-aminobutyric acid (GABA).

Pharmacokinetics

Absorption
The B vitamins are readily absorbed from the gastrointestinal tract, except in malabsorption syndromes. Pyridoxine is absorbed mainly in the jejunum. The Cmax of pyridoxine is achieved within 5.5 hours.
Distribution
Pyridoxine main active metabolite, pyridoxal 5’-phosphate, is released into the circulation (accounting for at least 60% of circulating vitamin B6) and is highly protein bound, primarily to albumin.
Metabolism
Pyridoxine is a prodrug primarily metabolized in the liver. The metabolic scheme for pyridoxine is complex, with formation of primary and secondary metabolites along with interconversion back to pyridoxine. Pyridoxine's major metabolite is 4-pyridoxic acid.
Elimination

Toxicity

Oral Rat LD50 = 4 gm/kg. Toxic effects include convulsions, dyspnea, hypermotility, diarrhea, ataxia and muscle weakness.

Active Ingredient/Synonyms

2-Methyl-3-hydroxy-4,5-dihydroxymethylpyridine | 3-hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridine | 3-Hydroxy-4,5-dimethylol-alpha-picoline | 5-Hydroxy-6-methyl-3,4-pyridinedimethanol | Pyridoxine | Pyridoxol | Vitamin B6 | Pyridoxine |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

Nutritional factor found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as flavin mononucleotide and flavin-adenine dinucleotide.

Indication

For the treatment of ariboflavinosis (vitamin B2 deficiency).

Mechanism of Action

Binds to riboflavin hydrogenase, riboflavin kinase, and riboflavin synthase. Riboflavin is the precursor of flavin mononucleotide (FMN, riboflavin monophosphate) and flavin adenine dinucleotide (FAD). The antioxidant activity of riboflavin is principally derived from its role as a precursor of FAD and the role of this cofactor in the production of the antioxidant reduced glutathione. Reduced glutathione is the cofactor of the selenium-containing glutathione peroxidases among other things. The glutathione peroxidases are major antioxidant enzymes. Reduced glutathione is generated by the FAD-containing enzyme glutathione reductase.

Pharmacokinetics

Absorption
Vitamin B2 is readily absorbed from the upper gastrointestinal tract.
Distribution
Metabolism
Hepatic.
Elimination

Active Ingredient/Synonyms

1-Deoxy-1-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)pentitol | 6,7-Dimethyl-9-D-ribitylisoalloxazine | 7,8-Dimethyl-10-(D-ribo-2,3,4,5-tetrahydroxypentyl)isoalloxazine | 7,8-Dimethyl-10-ribitylisoalloxazine | Lactoflavin | Lactoflavine | Riboflavina | Riboflavine | Riboflavinum | Vitamin B2 | Vitamin Bi | Vitamin G | Riboflavin |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.



Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.



Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.

References

  1. Health Science Authority of Singapore - Reclassified POM
  2. Drugbank