X

KABIVEN EMULSION FOR INFUSION

Product Information

Registration Status: Active

SIN11657P

KABIVEN EMULSION FOR INFUSION is approved to be sold in Singapore with effective from 2001-04-09. It is marketed by FRESENIUS KABI (SINGAPORE) PTE LTD, with the registration number of SIN11657P.

This product contains Aminoacetic Acid 2.3g/1000ml,Calcium Chloride 0.29g/1000ml,Glucose 107g/1000ml,Glycerin 4.3g/1000ml,L-Alanine 4.7g/1000ml,L-Arginine 3.3g/1000ml,L-Aspartic Acid 0.99g/1000ml,L-Glutamic Acid 1.6g/1000ml,L-Histidine 2g/1000ml,L-Isoleucine 1.6g/1000ml,L-Leucine 2.3g/1000ml,L-Lysine 3.3g/1000ml,L-Methionine 1.6g/1000ml,L-Phenylalanine 2.3g/1000ml,L-Proline 2g/1000ml,L-Serine 1.3g/1000ml,L-Threonine 1.6g/1000ml,L-Thyrosine 0.07g/1000ml,L-Tryptophan 0.56g/1000ml,L-Valine 2.1g/1000ml,Magnesium Heptahydrate 0.96g/1000ml,Potassium Chloride 1.7g/1000ml,Purified Egg Phospholipids 2.3g/1000ml,Sodium Acetate 2.4g/1000ml,Sodium Glycerophosphate 1.5g/1000ml, and Soyabean Oil 39g/1000ml in the form of INJECTION. It is approved for INTRAVENOUS use.

This product is manufactured by FRESENIUS KABI AB in SWEDEN, andFRESENIUS KABI AUSTRIA GMBH in AUSTRIA.

It is an Over-the-counter Medicine that can be freely obtained from any retailer

Product Reference
Loading...



Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

Calcium chloride is an ionic compound of calcium and chlorine. It is highly soluble in water and it is deliquescent. It is a salt that is solid at room temperature, and it behaves as a typical ionic halide. It has several common applications such as brine for refrigeration plants, ice and dust control on roads, and in cement. It can be produced directly from limestone, but large amounts are also produced as a by-product of the Solvay process. Because of its hygroscopic nature, it must be kept in tightly-sealed containers.

Indication

For the treatment of hypocalcemia in those conditions requiring a prompt increase in blood plasma calcium levels, for the treatment of magnesium intoxication due to overdosage of magnesium sulfate, and used to combat the deleterious effects of hyperkalemia as measured by electrocardiographic (ECG), pending correction of the increased potassium level in the extracellular fluid.

Mechanism of Action

Calcium chloride in water dissociates to provide calcium (Ca2+) and chloride (Cl-) ions. They are normal constituents of the body fluids and are dependent on various physiological mechanisms for maintenance of balance between intake and output. For hyperkalemia, the influx of calcium helps restore the normal gradient between threshold potential and resting membrane potential.

Toxicity

Too rapid injection may produce lowering of blood pressure and cardiac syncope. Persistent hypercalcemia from overdosage of calcium is unlikely because of rapid excretion.

Active Ingredient/Synonyms

Calcium chloride anhydrous | Calcium chloride, anhydrous | calcium(2+) chloride | Calcium Chloride |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

Glucose is a simple sugar (monosaccharide) generated during phosynthesis involving water, carbon and sunlight in plants. It is produced in humans via hepatic gluconeogenesis and breakdown of polymeric glucose forms (glycogenolysis). It circulates in human circulation as blood glucose and acts as an essential energy source for many organisms through aerobic or anaerobic respiration and fermentation.[A19399] It is primarily stored as starch in plants and glycogen in animals to be used in various metabolic processes in the cellular level. Its aldohexose stereoisomer, dextrose or D-glucose, is the most commonly occurring isomer of glucose in nature. L-glucose is a synthesized enantiomer that is used as a low-calorie sweetener and laxative.[T28] The unspecified form of glucose is commonly supplied as an injection for nutritional supplementation or metabolic disorders where glucose levels are improperly regulated.[L786] Glucose is listed on the World Health Organization's List of Essential Medicines, the most important medications needed in a basic health system.

Indication

Glucose pharmaceutical formulations (oral tablets, injections) are indicated for caloric supply and carbohydrate supplementation in case of nutrient deprivation. It is also used for metabolic disorders such as hypoglycemia.[L787]

Mechanism of Action

Glucose supplies most of the energy to all tissues by generating energy molecules ATP and NADH during a series of metabolism reactions called glycolysis. Glycolysis can be divided into two main phases where the preparatory phase is initiated by the phosphorylation of glucose by hexokinase to form glucose 6-phosphate.[A19402] The addition of the high-energy phosphate group activates glucose for the subsequent breakdown in later steps of glycolysis and is the rate-limiting step. Products end up as substrates for following reactions, to ultimately convert C6 glucose molecule into two C3 sugar molecules. These products enter the energy-releasing phase where the total of 4ATP and 2NADH molecules are generated per one glucose molecule. The total aerobic metabolism of glucose can produce up to 36 ATP molecules. These energy-producing reactions of glucose are limited to D-glucose as L-glucose cannot be phosphorylated by hexokinase.[T35] Glucose can act as precursors to generate other biomolecules such as vitamin C. It plays a role as a signaling molecule to control glucose and energy homeostasis. Glucose can regulate gene transcription, enzyme activity, hormone secretion, and the activity of glucoregulatory neurons. The types, number, and kinetics of glucose transporters expressed depends on the tissues and fine-tunes glucose uptake, metabolism, and signal generation to preserve cellular and whole body metabolic integrity.[A19401]

Pharmacokinetics

Absorption
Polysaccharides can be broken down into smaller units by pancreatic and intestinal glycosidases or intestinal flora. Sodium-dependent glucose transporter SGLT1 and GLUT2 (SLC2A2) play predominant roles in intestinal transport of glucose into the circulation.[A19395] SGLT1 is located in the apical membrane of the intestinal wall while GLUT2 is located in the basolateral membrane, but it was proposed that GLUT2 can be recruited into the apical membrane after a high luminal glucose bolus allowing bulk absorption of glucose by facilitated diffusion.[A19400] Oral preparation of glucose reaches the peak concentration within 40 minutes and the intravenous infusions display 100% bioavailability.[A19406]
Distribution
The mean volume of distribution after intravenous infusion is 10.6L.[A19407]
Metabolism
Glucose can undergo aerobic oxidation in conjunction with the synthesis of energy molecules. Glycolysis is the initial stage of glucose metabolism where one glucose molecule is degraded into two molecules of pyruvate via substrate-level phosphorylation. These products are transported to the mitochondria where they are further oxidized into oxygen and carbon dioxide.[A19402]
Elimination

Clearance

The mean metabolic clearance rate of glucose (MCR) for the 10 subjects studied at the higher insulin level was 2.27 ± 0.37 ml/kg/min at euglycemia and fell to 1.51±0.21 ml/kg/ at hyperglycemia. The mean MCR for the six subjects studied at the lower insulin level was 1.91 ± 0.31 ml/kg/min at euglycemia.[A19408]

Toxicity

Oral LD50 value in rats is 25800mg/kg. The administration of glucose infusions can cause fluid and solute overloading resulting in dilution of the serum electrolyte concentrations, overhydration, congested states, or pulmonary edema. Hypersensitivity reactions may also occur including anaphylactic/anaphylactoid reactions from oral tablets and intravenous infusions.[L786]

Active Ingredient/Synonyms

aldehydo-D-glucose | Anhydrous dextrose | D-Glucose in linear form | D-glucose, anhydrous | D(+)-Glucose | Dextrose anhydrous | Dextrose, anhydrous | Glucose | Glucose anhydrous | Glucose, anhydrous | D-glucose |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

A volatile vasodilator which relieves angina pectoris by stimulating guanylate cyclase and lowering cytosolic calcium. [PubChem]

Indication

For the prevention of angina

Mechanism of Action

Similar to other nitrites and organic nitrates, nitroglycerin is converted to nitric oxide (NO), an active intermediate compound which activates the enzyme guanylate cyclase. This stimulates the synthesis of cyclic guanosine 3',5'-monophosphate (cGMP) which then activates a series of protein kinase-dependent phosphorylations in the smooth muscle cells, eventually resulting in the dephosphorylation of the myosin light chain of the smooth muscle fiber. The subsequent release of calcium ions results in the relaxation of the smooth muscle cells and vasodilation.

Clearance

* 1 L/kg/min

Toxicity

Increased intracranial pressure, with any or all of persistent throbbing headache, confusion, and moderate fever; Vertigo; Palpitations; Visual disturbances; Nausea and vomiting (possibly with colic and even bloody diarrhea); Syncope (especially in the upright posture); Air hunger and dyspnea, later followed by reduced ventilatory effort; Diaphoresis, with the skin either flushed or cold and clammy; Heart block and bradycardia; Paralysis; Coma; Seizures; Death.

Active Ingredient/Synonyms

1,2,3-Propanetrioltrinitrate | 1,2,3-Propanetriyl nitrate | Glycerin trinitrate | Glycerol trinitrate | Glycerol, nitric acid triester | Glyceroli trinitratis | Glyceroltrinitrat | Glyceryl trinitrate | Natispray | NG | Nitroglicerina | Nitroglycerin | Nitroglycerine | Nitroglycerol | Nitromed | Propane-1,2,3-triyl trinitrate | Rectogesic | Trinitrine | Trinitroglycerin | Trinitroglycerol | Nitroglycerin |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases immunity, and provides energy for muscle tissue, brain, and the central nervous system.

Indication

Used for protein synthesis.

Mechanism of Action

L-Alanine is a non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases immunity, and provides energy for muscle tissue, brain, and the central nervous system. BCAAs are used as a source of energy for muscle cells. During prolonged exercise, BCAAs are released from skeletal muscles and their carbon backbones are used as fuel, while their nitrogen portion is used to form another amino acid, Alanine. Alanine is then converted to Glucose by the liver. This form of energy production is called the Alanine-Glucose cycle, and it plays a major role in maintaining the body's blood sugar balance.

Active Ingredient/Synonyms

(2S)-2-aminopropanoic acid | (S)-2-aminopropanoic acid | (S)-alanine | Alanine | L-2-Aminopropionic acid | L-Alanin | L-alpha-Alanine | L-α-alanine | L-Alanine |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

An essential amino acid that is physiologically active in the L-form.

Indication

Used for nutritional supplementation, also for treating dietary shortage or imbalance.

Mechanism of Action

Many of supplemental L-arginine's activities, including its possible anti-atherogenic actions, may be accounted for by its role as the precursor to nitric oxide or NO. NO is produced by all tissues of the body and plays very important roles in the cardiovascular system, immune system and nervous system. NO is formed from L-arginine via the enzyme nitric oxide synthase or synthetase (NOS), and the effects of NO are mainly mediated by 3,'5' -cyclic guanylate or cyclic GMP. NO activates the enzyme guanylate cyclase, which catalyzes the synthesis of cyclic GMP from guanosine triphosphate or GTP. Cyclic GMP is converted to guanylic acid via the enzyme cyclic GMP phosphodiesterase. NOS is a heme-containing enzyme with some sequences similar to cytochrome P-450 reductase. Several isoforms of NOS exist, two of which are constitutive and one of which is inducible by immunological stimuli. The constitutive NOS found in the vascular endothelium is designated eNOS and that present in the brain, spinal cord and peripheral nervous system is designated nNOS. The form of NOS induced by immunological or inflammatory stimuli is known as iNOS. iNOS may be expressed constitutively in select tissues such as lung epithelium. All the nitric oxide synthases use NADPH (reduced nicotinamide adenine dinucleotide phosphate) and oxygen (O2) as cosubstrates, as well as the cofactors FAD (flavin adenine dinucleotide), FMN (flavin mononucleotide), tetrahydrobiopterin and heme. Interestingly, ascorbic acid appears to enhance NOS activity by increasing intracellular tetrahydrobiopterin. eNOS and nNOS synthesize NO in response to an increased concentration of calcium ions or in some cases in response to calcium-independent stimuli, such as shear stress. In vitro studies of NOS indicate that the Km of the enzyme for L-arginine is in the micromolar range. The concentration of L-arginine in endothelial cells, as well as in other cells, and in plasma is in the millimolar range. What this means is that, under physiological conditions, NOS is saturated with its L-arginine substrate. In other words, L-arginine would not be expected to be rate-limiting for the enzyme, and it would not appear that supraphysiological levels of L-arginine which could occur with oral supplementation of the amino acid^would make any difference with regard to NO production. The reaction would appear to have reached its maximum level. However, in vivo studies have demonstrated that, under certain conditions, e.g. hypercholesterolemia, supplemental L-arginine could enhance endothelial-dependent vasodilation and NO production.

Pharmacokinetics

Absorption
Absorbed from the lumen of the small intestine into the enterocytes. Absorption is efficient and occurs by an active transport mechanism.
Distribution
Metabolism
Some metabolism of L-arginine takes place in the enterocytes. L-arginine not metabolized in the enterocytes enters the portal circulation from whence it is transported to the liver, where again some portion of the amino acid is metabolized.
Elimination

Toxicity

Oral supplementation with L-arginine at doses up to 15 grams daily are generally well tolerated. The most common adverse reactions of higher doses from 15 to 30 grams daily are nausea, abdominal cramps and diarrhea. Some may experience these symptoms at lower doses.

Active Ingredient/Synonyms

(2S)-2-amino-5-(carbamimidamido)pentanoic acid | (2S)-2-amino-5-guanidinopentanoic acid | (S)-2-amino-5-guanidinopentanoic acid | (S)-2-Amino-5-guanidinovaleric acid | Arg | Arginine | L-(+)-Arginine | L-Arg | L-Arginin | R | L-Arginine |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter.

Indication

There is no support for the claim that aspartates are exercise performance enhancers, i.e. ergogenic aids.

Mechanism of Action

There are also claims that L-aspartate has ergogenic effects, that it enhances performance in both prolonged exercise and short intensive exercise. It is hypothesized that L-aspartate, especially the potassium magnesium aspartate salt, spares stores of muscle glycogen and/or promotes a faster rate of glycogen resynthesis during exercise. It has also been hypothesized that L-aspartate can enhance short intensive exercise by serving as a substrate for energy production in the Krebs cycle and for stimulating the purine nucleotide cycle.

Pharmacokinetics

Absorption
Absorbed from the small intestine by an active transport process
Distribution
Metabolism
Elimination

Toxicity

Mild gastrointestinal side effects including diarrhea. LD50 (rat) > 5,000 mg/kg.

Active Ingredient/Synonyms

(S)-2-aminobutanedioic acid | (S)-2-aminosuccinic acid | 2-Aminosuccinic acid | Asp | Aspartic acid | D | L-Asp | L-Asparaginsaeure | L-Asparaginsäure | L-Aspartate | L-Aspartic acid | L-Aspartic Acid |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from glutamic acid and ammonia. It is the principal carrier of nitrogen in the body and is an important energy source for many cells. An oral formulation of L-glutamine was approved by the FDA in July 2017 for use in sickle cell disease [L892]. This oral formulation is marketed under the tradename Endari by Emmaus Medical.

Indication

Used for nutritional supplementation, also for treating dietary shortage or imbalance. Used to reduce the acute complications of sickle cell disease in adult and pediatric patients 5 years of age and older [FDA Label].

Mechanism of Action

Supplemental L-glutamine's possible immunomodulatory role may be accounted for in a number of ways. L-glutamine appears to play a major role in protecting the integrity of the gastrointestinal tract and, in particular, the large intestine. During catabolic states, the integrity of the intestinal mucosa may be compromised with consequent increased intestinal permeability and translocation of Gram-negative bacteria from the large intestine into the body. The demand for L-glutamine by the intestine, as well as by cells such as lymphocytes, appears to be much greater than that supplied by skeletal muscle, the major storage tissue for L-glutamine. L-glutamine is the preferred respiratory fuel for enterocytes, colonocytes and lymphocytes. Therefore, supplying supplemental L-glutamine under these conditions may do a number of things. For one, it may reverse the catabolic state by sparing skeletal muscle L-glutamine. It also may inhibit translocation of Gram-negative bacteria from the large intestine. L-glutamine helps maintain secretory IgA, which functions primarily by preventing the attachment of bacteria to mucosal cells. L-glutamine appears to be required to support the proliferation of mitogen-stimulated lymphocytes, as well as the production of interleukin-2 (IL-2) and interferon-gamma (IFN-gamma). It is also required for the maintenance of lymphokine-activated killer cells (LAK). L-glutamine can enhance phagocytosis by neutrophils and monocytes. It can lead to an increased synthesis of glutathione in the intestine, which may also play a role in maintaining the integrity of the intestinal mucosa by ameliorating oxidative stress. The exact mechanism of the possible immunomodulatory action of supplemental L-glutamine, however, remains unclear. It is conceivable that the major effect of L-glutamine occurs at the level of the intestine. Perhaps enteral L-glutamine acts directly on intestine-associated lymphoid tissue and stimulates overall immune function by that mechanism, without passing beyond the splanchnic bed. The exact mechanism of L-glutamine's effect on NAD redox potential is unknown but is thought to involve increased amounts of reduced glutathione made available by glutamine supplementation [FDA Label]. This improvement in redox potential reduces the amount of oxidative damage which sickle red blood cells are more susceptible to. The reduction in cellular damage is thought to reduce chronic hemolysis and vaso-occlusive events.

Pharmacokinetics

Absorption
Absorption is efficient and occurs by an active transport mechanism. Tmax is 30 minutes after a single dose [FDA Label]. Absorption kinetics following multiple doses has not yet been determined.
Distribution
Volume of distribution is 200 mL/kg after intravenous bolus dose [FDA Label].
Metabolism
Exogenous L-glutamine likely follows the same metabolic pathways as endogenous L-glutamine which is involved in the formation of glutamate, proteins, nucleotides, and amino acid sugars [FDA Label].
Elimination

Toxicity

Doses of L-glutamine up to 21 grams daily appear to be well tolerated. Reported adverse reactions are mainly gastrointestinal and not common. They include constipation and bloating. There is one older report of two hypomanic patients whose manic symptoms were exacerbated following the use of 2 to 4 grams daily of L-glutamine. The symptoms resolved when the L-glutamine was stopped. These patients were not rechallenged, nor are there any other reports of this nature. The most common adverse effects observed in clinical trials of Endari were constipation (21%), nausea (19%), headache (18%), abdominal pain (17%), cough (16%), extremity pain (13%), back pain (12%), and chest pain (12%) [FDA Label].

Active Ingredient/Synonyms

(2S)-2-amino-4-carbamoylbutanoic acid | (2S)-2,5-diamino-5-oxopentanoic acid | (S)-2,5-diamino-5-oxopentanoic acid | Glutamic acid 5-amide | Glutamic acid amide | Glutamine | L-(+)-glutamine | L-2-aminoglutaramic acid | L-glutamic acid γ-amide | L-Glutamin | L-Glutaminsäure-5-amid | Levoglutamide | Q | L-Glutamine |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

An essential amino acid that is required for the production of histamine.

Indication

The actions of supplemental L-histidine are entirely unclear. It may have some immunomodulatory as well as antioxidant activity. L-histidine may be indicated for use in some with rheumatoid arthritis. It is not indicated for treatment of anemia or uremia or for lowering serum cholesterol.

Mechanism of Action

Since the actions of supplemental L-histidine are unclear, any postulated mechanism is entirely speculative. However, some facts are known about L-histidine and some of its metabolites, such as histamine and trans-urocanic acid, which suggest that supplemental L-histidine may one day be shown to have immunomodulatory and/or antioxidant activities. Low free histidine has been found in the serum of some rheumatoid arthritis patients. Serum concentrations of other amino acids have been found to be normal in these patients. L-histidine is an excellent chelating agent for such metals as copper, iron and zinc. Copper and iron participate in a reaction (Fenton reaction) that generates potent reactive oxygen species that could be destructive to tissues, including joints.
L-histidine is the obligate precursor of histamine, which is produced via the decarboxylation of the amino acid. In experimental animals, tissue histamine levels increase as the amount of dietary L-histidine increases. It is likely that this would be the case in humans as well. Histamine is known to possess immunomodulatory and antioxidant activity. Suppressor T cells have H2 receptors, and histamine activates them. Promotion of suppressor T cell activity could be beneficial in rheumatoid arthritis. Further, histamine has been shown to down-regulate the production of reactive oxygen species in phagocytic cells, such as monocytes, by binding to the H2 receptors on these cells. Decreased reactive oxygen species production by phagocytes could play antioxidant, anti-inflammatory and immunomodulatory roles in such diseases as rheumatoid arthritis.
This latter mechanism is the rationale for the use of histamine itself in several clinical trials studying histamine for the treatment of certain types of cancer and viral diseases. In these trials, down-regulation by histamine of reactive oxygen species formation appears to inhibit the suppression of natural killer (NK) cells and cytotoxic T lymphocytes, allowing these cells to be more effective in attacking cancer cells and virally infected cells.

Pharmacokinetics

Absorption
Absorbed from the small intestine via an active transport mechanism requiring the presence of sodium.
Distribution
Metabolism
Elimination

Toxicity

ORL-RAT LD50 > 15000 mg/kg, IPR-RAT LD50 > 8000 mg/kg, ORL-MUS LD50 > 15000 mg/kg, IVN-MUS LD50 > 2000 mg/kg; Mild gastrointestinal side effects.

Active Ingredient/Synonyms

(S)-4-(2-Amino-2-carboxyethyl)imidazole | (S)-a-Amino-1H-imidazole-4-propanoic acid | (S)-alpha-amino-1H-Imidazole-4-propanoic acid | (S)-alpha-Amino-1H-imidazole-4-propionic acid | (S)-α-amino-1H-Imidazole-4-propanoic acid | HIS | Histidina | L-(−)-histidine | L-Histidin | L-Histidine | Histidine |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of leucine. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. [PubChem]

Indication

The branched-chain amino acids may have antihepatic encephalopathy activity in some. They may also have anticatabolic and antitardive dyskinesia activity.

Mechanism of Action

(Applies to Valine, Leucine and Isoleucine)
This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates.
The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic.
There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological problems are due to poor formation of myelin in the CNS.

Pharmacokinetics

Absorption
Absorbed from the small intestine by a sodium-dependent active-transport process
Distribution
Metabolism
Hepatic
Elimination

Toxicity

Symptoms of hypoglycemia, increased mortality in ALS patients taking large doses of BCAAs

Active Ingredient/Synonyms

(2S,3S)-2-Amino-3-methylpentanoic acid | 2-Amino-3-methylvaleric acid | alpha-amino-beta-methylvaleric acid | I | Ile | Isoleucine | L-Isoleucine | α-amino-β-methylvaleric acid | L-Isoleucine |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

An essential branched-chain amino acid important for hemoglobin formation. [PubChem]

Indication

Indicated to assist in the prevention of the breakdown of muscle proteins that sometimes occur after trauma or severe stress.

Mechanism of Action

This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates. The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic. There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological problems are due to poor formation of myelin in the CNS.

Active Ingredient/Synonyms

(2S)-2-Amino-4-methylpentanoic acid | (2S)-alpha-2-Amino-4-methylvaleric acid | (2S)-alpha-Leucine | (S)-(+)-Leucine | (S)-Leucine | 2-Amino-4-methylvaleric acid | L | L-Leucin | L-Leuzin | Leu | Leucine | L-Leucine |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

L-Lysine (abbreviated as Lys or K) is an α-amino acid with the chemical formula HO2CCH(NH2)(CH2)4NH2. This amino acid is an essential amino acid, which means that humans cannot synthesize it. Its codons are AAA and AAG. L-Lysine is a base, as are arginine and histidine. The ε-amino group often participates in hydrogen bonding and as a general base in catalysis. Common posttranslational modifications include methylation of the ε-amino group, giving methyl-, dimethyl-, and trimethyllysine. The latter occurs in calmodulin. Other posttranslational modifications include acetylation. Collagen contains hydroxylysine which is derived from lysine by lysyl hydroxylase. O-Glycosylation of lysine residues in the endoplasmic reticulum or Golgi apparatus is used to mark certain proteins for secretion from the cell.

Indication

Supplemental L-lysine has putative anti-herpes simplex virus activity. There is preliminary research suggesting that it may have some anti-osteoporotic activity.

Mechanism of Action

Proteins of the herpes simplex virus are rich in L-arginine, and tissue culture studies indicate an enhancing effect on viral replication when the amino acid ratio of L-arginine to L-lysine is high in the tissue culture media. When the ratio of L-lysine to L-arginine is high, viral replication and the cytopathogenicity of herpes simplex virus have been found to be inhibited. L-lysine may facilitate the absorption of calcium from the small intestine.

Pharmacokinetics

Absorption
Absorbed from the lumen of the small intestine into the enterocytes by an active transport process
Distribution
Metabolism
Hepatic
Elimination

Active Ingredient/Synonyms

(S)-2,6-diaminohexanoic acid | (S)-lysine | (S)-α,ε-diaminocaproic acid | 6-ammonio-L-norleucine | L-2,6-Diaminocaproic acid | L-lys | L-Lysin | LYS | Lysina | Lysine | Lysine acid | Lysinum | L-Lysine |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

A sulfur containing essential amino acid that is important in many body functions. It is a chelating agent for heavy metals.

Indication

Used for protein synthesis including the formation of SAMe, L-homocysteine, L-cysteine, taurine, and sulfate.

Mechanism of Action

The mechanism of the possible anti-hepatotoxic activity of L-methionine is not entirely clear. It is thought that metabolism of high doses of acetaminophen in the liver lead to decreased levels of hepatic glutathione and increased oxidative stress. L-methionine is a precursor to L-cysteine. L-cysteine itself may have antioxidant activity. L-cysteine is also a precursor to the antioxidant glutathione. Antioxidant activity of L-methionine and metabolites of L-methionine appear to account for its possible anti-hepatotoxic activity. Recent research suggests that methionine itself has free-radical scavenging activity by virtue of its sulfur, as well as its chelating ability.

Pharmacokinetics

Absorption
Absorbed from the lumen of the small intestine into the enterocytes by an active transport process.
Distribution
Metabolism
Hepatic
Elimination

Toxicity

Doses of L-methionine of up to 250 mg daily are generally well tolerated. Higher doses may cause nausea, vomiting and headache. Healthy adults taking 8 grams of L-methionine daily for four days were found to have reduced serum folate levels and leucocytosis. Healthy adults taking 13.9 grams of L-methionine daily for five days were found to have changes in serum pH and potassium and increased urinary calcium excretion. Schizophrenic patients given 10 to 20 grams of L-methionine daily for two weeks developed functional psychoses. Single doses of 8 grams precipitated encephalopathy in patients with cirrhosis.

Active Ingredient/Synonyms

(2S)-2-amino-4-(methylsulfanyl)butanoic acid | (S)-2-amino-4-(methylthio)butanoic acid | (S)-2-amino-4-(methylthio)butyric acid | (S)-methionine | L-(−)-methionine | L-a-Amino-g-methylthiobutyric acid | L-Methionin | L-Methionine | L-α-amino-γ-methylmercaptobutyric acid | M | Met | Methionine |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

An essential aromatic amino acid that is a precursor of melanin; dopamine; noradrenalin (norepinephrine), and thyroxine.

Indication

L-phenylalanine may be helpful in some with depression. It may also be useful in the treatment of vitiligo. There is some evidence that L-phenylalanine may exacerbate tardive dyskinesia in some schizophrenic patients and in some who have used neuroleptic drugs.

Mechanism of Action

The mechanism of L-phenylalanine's putative antidepressant activity may be accounted for by its precursor role in the synthesis of the neurotransmitters norepinephrine and dopamine. Elevated brain norepinephrine and dopamine levels are thought to be associated with antidepressant effects.
The mechanism of L-phenylalanine's possible antivitiligo activity is not well understood. It is thought that L-phenylalanine may stimulate the production of melanin in the affected skin

Pharmacokinetics

Absorption
Absorbed from the small intestine by a sodium dependent active transport process.
Distribution
Metabolism
Hepatic. L-phenylalanine that is not metabolized in the liver is distributed via the systemic circulation to the various tissues of the body, where it undergoes metabolic reactions similar to those that take place in the liver.
Elimination

Toxicity

L-phenylalanine will exacerbate symptoms of phenylketonuria if used by phenylketonurics. L-phenylalanine was reported to exacerbate tardive dyskinesia when used by some with schizophrenia.

Active Ingredient/Synonyms

(S)-2-Amino-3-phenylpropionic acid | (S)-alpha-Amino-beta-phenylpropionic acid | 3-phenyl-L-alanine | beta-Phenyl-L-alanine | F | Phe | Phenylalanine | β-phenyl-L-alanine | L-Phenylalanine |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

L-Proline is one of the twenty amino acids used in living organisms as the building blocks of proteins. Proline is sometimes called an imino acid, although the IUPAC definition of an imine requires a carbon-nitrogen double bond. Proline is a non-essential amino acid that is synthesized from glutamic acid. It is an essential component of collagen and is important for proper functioning of joints and tendons.

Indication

L-Proline is extremely important for the proper functioning of joints and tendons and also helps maintain and strengthen heart muscles.

Mechanism of Action

Glycogenic, by L-Proline oxidase in the kidney, it is ring-opened and is oxidized to form L-Glutamic acid. L-Ornithine and L-Glutamic acid are converted to L-Proline via L-Glutamic acid-gamma-semialdehyde. It is contained abundantly in collagen, and is intimately involved in the function of arthrosis and chordae.

Active Ingredient/Synonyms

(-)-2-Pyrrolidinecarboxylic acid | (−)-(S)-proline | (−)-2-pyrrolidinecarboxylic acid | (−)-proline | (2S)-pyrrolidine-2-carboxylic acid | (S)-2-Carboxypyrrolidine | (S)-2-Pyrrolidinecarboxylic acid | (S)-pyrrolidine-2-carboxylic acid | 2-Pyrrolidinecarboxylic acid | L-(−)-proline | L-alpha-pyrrolidinecarboxylic acid | L-Prolin | L-pyrrolidine-2-carboxylic acid | L-α-pyrrolidinecarboxylic acid | P | Prolina | Proline | Prolinum | L-Proline |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from glycine or threonine. It is involved in the biosynthesis of purines; pyrimidines; and other amino acids.

Indication

Used as a natural moisturizing agent in some cosmetics and skin care products.

Mechanism of Action

L-Serine plays a role in cell growth and development (cellular proliferation). The conversion of L-serine to glycine by serine hydroxymethyltransferase results in the formation of the one-carbon units necessary for the synthesis of the purine bases, adenine and guanine. These bases when linked to the phosphate ester of pentose sugars are essential components of DNA and RNA and the end products of energy producing metabolic pathways, ATP and GTP. In addition, L-serine conversion to glycine via this same enzyme provides the one-carbon units necessary for production of the pyrimidine nucleotide, deoxythymidine monophosphate, also an essential component of DNA.

Active Ingredient/Synonyms

(S)-2-Amino-3-hydroxypropanoic acid | (S)-Serine | alpha-Amino-beta-hydroxypropionic acid | beta-Hydroxyalanine | L-Serine | Ser | Serina | Serinum | Serine |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. [PubChem]

Indication

L-Threonine makes up collagen, elastin, and enamel protein. It aids proper fat metabolism in the liver, helps the digestive and intestinal tracts function more smoothly, and assists in metabolism and assimilation.

Mechanism of Action

L-Threonine is a precursor to the amino acids glycine and serine. It acts as a lipotropic in controlling fat build-up in the liver. May help combat mental illness and may be very useful in indigestion and intestinal malfunctions. Also, threonine prevents excessive liver fat. Nutrients are more readily absorbed when threonine is present.

Active Ingredient/Synonyms

(2S,3R)-(-)-Threonine | (2S)-threonine | 2-Amino-3-hydroxybutyric acid | L-(-)-Threonine | L-2-Amino-3-hydroxybutyric acid | L-alpha-amino-beta-hydroxybutyric acid | L-Threonin | L-α-amino-β-hydroxybutyric acid | Thr | Threonine | L-Threonine |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.



Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

An essential amino acid that is necessary for normal growth in infants and for nitrogen balance in adults. It is a precursor of indole alkaloids in plants. It is a precursor of serotonin (hence its use as an antidepressant and sleep aid). It can be a precursor to niacin, albeit inefficiently, in mammals.

Indication

Tryptophan may be useful in increasing serotonin production, promoting healthy sleep, managing depression by enhancing mental and emotional well-being, managing pain tolerance, and managing weight.

Mechanism of Action

A number of important side reactions occur during the catabolism of tryptophan on the pathway to acetoacetate. The first enzyme of the catabolic pathway is an iron porphyrin oxygenase that opens the indole ring. The latter enzyme is highly inducible, its concentration rising almost 10-fold on a diet high in tryptophan. Kynurenine is the first key branch point intermediate in the pathway. Kynurenine undergoes deamniation in a standard transamination reaction yielding kynurenic acid. Kynurenic acid and metabolites have been shown to act as antiexcitotoxics and anticonvulsives. A second side branch reaction produces anthranilic acid plus alanine. Another equivalent of alanine is produced further along the main catabolic pathway, and it is the production of these alanine residues that allows tryptophan to be classified among the glucogenic and ketogenic amino acids. The second important branch point converts kynurenine into 2-amino-3-carboxymuconic semialdehyde, which has two fates. The main flow of carbon elements from this intermediate is to glutarate. An important side reaction in liver is a transamination and several rearrangements to produce limited amounts of nicotinic acid, which leads to production of a small amount of NAD+ and NADP+.

Toxicity

Oral rat LD50: > 16 gm/kg. Investigated as a tumorigen, mutagen, reproductive effector. Symptoms of overdose include agitation, confusion, diarrhea, fever, overactive reflexes, poor coordination, restlessness, shivering, sweating, talking or acting with excitement you cannot control, trembling or shaking, twitching, and vomiting.

Active Ingredient/Synonyms

(2S)-2-amino-3-(1H-indol-3-yl)propanoic acid | (S)-alpha-Amino-beta-(3-indolyl)-propionic acid | (S)-Tryptophan | (S)-α-amino-1H-indole-3-propanoic acid | L-(-)-Tryptophan | L-(−)-tryptophan | L-β-3-indolylalanine | Trp | Tryptophan | W | L-Tryptophan |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway. [PubChem]

Indication

Promotes mental vigor, muscle coordination, and calm emotions. May also be of use in a minority of patients with hepatic encephalopathy and in some with phenylketonuria.

Mechanism of Action

(Applies to Valine, Leucine and Isoleucine)
This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates.
The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic.
There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological problems are due to poor formation of myelin in the CNS.

Pharmacokinetics

Absorption
Absorbed from the small intestine by a sodium-dependent active-transport process.
Distribution
Metabolism
Hepatic
Elimination

Toxicity

Symptoms of hypoglycemia, increased mortality in ALS patients taking large doses of BCAAs.

Active Ingredient/Synonyms

(2S)-2-Amino-3-methylbutanoic acid | (S)-Valine | 2-Amino-3-methylbutyric acid | L-(+)-alpha-Aminoisovaleric acid | L-alpha-Amino-beta-methylbutyric acid | Val | Valine | L-Valine |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.



Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

A white crystal or crystalline powder used as an electrolyte replenisher, in the treatment of hypokalemia, in buffer solutions, and in fertilizers and explosives.

Indication

For use as an electrolyte replenisher and in the treatment of hypokalemia.

Mechanism of Action

Supplemental potassium in the form of high potassium food or potassium chloride may be able to restore normal potassium levels.

Pharmacokinetics

Absorption
Potassium is a normal dietary constituent and under steady-state conditions the amount of potassium absorbed from the gastrointestinal tract is equal to the amount excreted in the urine.
Distribution
Metabolism
Elimination

Toxicity

The administration of oral potassium salts to persons with normal excretory mechanisms for potassium rarely causes serious hyperkalemia. However, if excretory mechanisms are impaired, of if potassium is administered too rapidly intravenously, potentially fatal hyperkalemia can result. It is important to recognize that hyperkalemia is usually asymptomatic and may be manifested only by an increased serum potassium concentration (6.5-8.0 mEq/L) and characteristic electrocardiographic changes (peaking of T-waves, loss of P-wave, depression of S-T segment, and prolongation of the QT interval). Late manifestations include muscle paralysis and cardiovascular collapse from cardiac arrest (9-12 mEq/L).

Active Ingredient/Synonyms

[KCl] | Chlorid draselny | Chloride of potash | Kaliumchlorid | KCl | Monopotassium chloride | Muriate of potash | Sylvite | Potassium Chloride |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.



Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

Sodium Acetate is chemically designated CH3COONa, a hygroscopic powder very soluble in water. Sodium acetate could be used as additives in food, industry, concrete manufacture, heating pads and in buffer solutions. Medically, sodium acetate is important component as an electrolyte replenisher when given intravenously. It is mainly indicated to correct sodium levels in hyponatremic patients. It can be used also in metabolic acidosis and for urine alkalinization.

Indication

Injection, USP 40 mEq is indicated as a source of sodium, for addition to large volume intravenous fluids to prevent or correct hyponatremia in patients with restricted or no oral intake. It is also useful as an additive for preparing specific intravenous fluid formulas when the needs of the patient cannot be met by standard electrolyte or nutrient solutions. Sodium acetate and other bicarbonate precursors are alkalinising agents, and can be used to correct metabolic acidosis, or for alkalinisation of the urine.

Mechanism of Action

It works as a source of sodium ions especially in cases of hyponatremic patients. Sodium has a primary role in regulating extracellular fluid volume. It controls water distribution, fluid and electrolyte balance and the osmotic pressure of body fluids. Sodium is also involved in nerve conduction, muscle contraction, acid-base balance and cell nutrient uptake.

Pharmacokinetics

Absorption
It is readily available in the circulation after IV administration.
Distribution
Metabolism
In liver, sodium acetate is being metabolized into bicarbonate. To form bicarbonate, acetate is slowly hydrolyzed to carbon dioxide and water, which are then converted to bicarbonate by the addition of a hydrogen ion.
Elimination

Toxicity

LD50: 25956 mg/kg (Rat.)

Active Ingredient/Synonyms

acetic acid, sodium salt | Acetic acid, sodium salt (1:1) | anhydrous sodium acetate | Natriumazetat | Sodium acetate anhydrous | Sodium acetate, anhydrous | Sodium acetate,anhydrous | Sodium acetate |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

Sodium glycerophosphate is one of several glycerophosphate salts. It is used clinically to treat or prevent low phosphate levels [FDA Label]. Glycerophosphate is hydrolyzed to inorganic phosphate and glycerol in the body [A32667]. The extent of this reaction is dependent on the activity of serum alkaline phosphatases.

Indication

Sodium glycerophosphate is indicated for use as a source of phosphate in total parenteral nutrition [FDA Label]. It is used in combination with amino acids, dextrose, lipid emulsions, and other electrolytes.

Mechanism of Action

Sodium glycerophosphate acts as a donor of inorganic phosphate [A32667]. See [DB09413] for a description of phosphate's role in the body.

Pharmacokinetics

Absorption
Peak serum phosphate concentration is reached in 4h [A32667].
Distribution
Metabolism
Glycerophosphate is hydrolyzed to form inorganic phosphate [A32667]. The extent of this reaction is dependent on serum alkaline phosphatase activity.
Elimination

Active Ingredient/Synonyms

Disodium glycerol phosphate | Sodium glycerophosphate anhydrous | Sodium glycerophosphate |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.



Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.

References

  1. Health Science Authority of Singapore - Reclassified POM
  2. Drugbank

Pharmfair.com uses cookies to improve your browsing experience. We'll assume you're ok with this, but you can opt-out if you wish. Peace!