CONVERIDE FILM COATED TABLETS 150mg/12.5mg

Product Information

Registration Status: Active

CONVERIDE FILM COATED TABLETS 150mg/12.5mg is approved to be sold in Singapore with effective from 2018-03-23. It is marketed by MEDOCHEMIE SINGAPORE PTE LTD, with the registration number of SIN15458P.

This product contains Irbesartan 150 mg, and Hydrochlorothiazide 12.5 mg in the form of TABLET, FILM COATED. It is approved for ORAL use.

This product is manufactured by MEDOCHEMIE LTD - CENTRAL FACTORY in CYPRUS.

It is a Prescription Only Medicine that can only be obtained from a doctor or a dentist, or a pharmacist with a prescription from a Singapore-registered doctor or dentist.

Irbesartan
Hydrochlorothiazide

Description

Irbesartan is an angiotensin receptor blocker (ARB) used mainly for the treatment of hypertension. It competes with angiotensin II for binding at the AT1 receptor subtype. Unlike ACE inhibitors, ARBs do not have the adverse effect of dry cough. The use of ARBs is pending revision due to findings from several clinical trials suggesting that this class of drugs may be associated with a small increased risk of cancer.

Indication

For the treatment of hypertension, as well as diabetic nephropathy with an elevated serum creatinine and proteinuria (>300 mg/day) in patients with type 2 diabetes and hypertension. Irbesartan is also used as a second line agent in the treatment of congestive heart failure.

Mechanism of Action

Irbesartan is a nonpeptide tetrazole derivative and an angiotensin II antagonist that selectively blocks the binding of angiotensin II to the AT1 receptor. In the renin-angiotensin system, angiotensin I is converted by angiotensin-converting enzyme (ACE) to form angiotensin II. Angiotensin II stimulates the adrenal cortex to synthesize and secrete aldosterone, which decreases the excretion of sodium and increases the excretion of potassium. Angiotensin II also acts as a vasoconstrictor in vascular smooth muscle. Irbesartan, by blocking the binding of angiotensin II to the AT1 receptor, promotes vasodilation and decreases the effects of aldosterone. The negative feedback regulation of angiotensin II on renin secretion is also inhibited, but the resulting rise in plasma renin concentrations and consequent rise in angiotensin II plasma concentrations do not counteract the blood pressure–lowering effect that occurs. The action of ARBs is different from ACE inhibitors, which block the conversion of angiotensin I to angiotensin II, meaning that the production of angiotensin II is not completely inhibited, as the hormone can be formed via other enzymes. Also, unlike ACE inhibitors, irbesartan and other ARBs do not interfere with response to bradykinins and substance P, which allows for the absence of adverse effects that are present in ACE inhibitors (eg. dry cough).

Pharmacokinetics

Absorption
Rapid and complete with an average absolute bioavailability of 60-80%. Food has no affect on bioavailability.
Distribution
* 53 to 93 L
Metabolism
Hepatic. Irbesartan is metabolized via glucuronide conjugation and oxidation. In vitro studies of irbesartan oxidation by cytochrome P450 isoenzymes indicated irbesartan was oxidized primarily by 2C9; metabolism by 3A4 was negligible.
Elimination

Clearance

* 157-176 mL/min

Toxicity

Hypotension and tachycardia; bradycardia might also occur from overdose, LD50=mg/kg(orally in rat)

Active Ingredient/Synonyms

2-butyl-3-{[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl}-1,3-diazaspiro[4.4]non-1-en-4-one | Irbesartan | Irbesartan |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.


Description

A thiazide diuretic often considered the prototypical member of this class. It reduces the reabsorption of electrolytes from the renal tubules. This results in increased excretion of water and electrolytes, including sodium, potassium, chloride, and magnesium. It has been used in the treatment of several disorders including edema, hypertension, diabetes insipidus, and hypoparathyroidism. [PubChem]

Indication

For the treatment of high blood pressure and management of edema.

Mechanism of Action

Hydrochlorothiazide, a thiazide diuretic, inhibits water reabsorption in the nephron by inhibiting the sodium-chloride symporter (SLC12A3) in the distal convoluted tubule, which is responsible for 5% of total sodium reabsorption. Normally, the sodium-chloride symporter transports sodium and chloride from the lumen into the epithelial cell lining the distal convoluted tubule. The energy for this is provided by a sodium gradient established by sodium-potassium ATPases on the basolateral membrane. Once sodium has entered the cell, it is transported out into the basolateral interstitium via the sodium-potassium ATPase, causing an increase in the osmolarity of the interstitium, thereby establishing an osmotic gradient for water reabsorption. By blocking the sodium-chloride symporter, hydrochlorothiazide effectively reduces the osmotic gradient and water reabsorption throughout the nephron.

Pharmacokinetics

Absorption
50-60%
Distribution
Metabolism
Hydrochlorothiazide is not metabolized.
Elimination

Toxicity

The most common signs and symptoms observed are those caused by electrolyte depletion (hypokalemia, hypochloremia, hyponatremia) and dehydration resulting from excessive diuresis. If digitalis has also been administered, hypokalemia may accentuate cardiac arrhythmias. The oral LD50 of hydrochlorothiazide is greater than 10 g/kg in the mouse and rat.

Active Ingredient/Synonyms

HCTZ | Hydrochlorothiazide |


Source of information: Drugbank (External Link). Last updated on: 3rd July 18. *Trade Name used in the content below may not be the same as the HSA-registered product.

References

  1. Health Science Authority of Singapore - Reclassified POM
  2. Drugbank